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Coordinate systems and analytic expansions for three-body 
atomic wavefunctions: 11. Closed form wavefunction to second 
order in r 

J E Gottschalk, P C Abbott and E N Maslen 
Department of Physics, University of Western Australia, Nedlands 6009, Western Australia, 
Australia 

Received 27 February 1986, in final form 22 July 1986 

Abstract. Several coordinate systems for solving the few-electron Schrodinger equation 
are presented. Formal solutions corresponding to each coordinate system are given in 
terms of the Fock expansion and their interrelationships and general structure are examined. 
Attention is focused on the solutions obtained using spherical polar coordinates for a 
Coulomb potential of arbitrary symmetry. The wavefunction is obtained up to second 
order in the hyperradius r = ( r : +  r:)1'2, and the special case of IS states is then reduced 
to a closed form using classical techniques. The insight gained from this reduction suggests 
methods for solving the wavefunction to all orders. The results hint at the existence of 
closed form wavefunctions for few-body systems. 

1. Introduction 

Closed form helium wavefunctions have been discussed since the Schrodinger equation 
(SE) was postulated. After Bartlett et al(1935) showed that the 'S helium wavefunction 
could not be expanded as an analytic series in interparticle coordinates, more emphasis 
was placed on approximate techniques. However Bartlett (1937) and Fock (1954, 
1958) proposed a formally correct expansion for solving the SE for 'S He, utilising 
hyperspherical coordinates (HC), by including logarithmic functions of the hyperradius. 
Ermolaev (1958) and Demkov and Ermolaev (1959) extended the Fock expansion (FE) 

to the N-electron SE. Recently Leray (1982a, b, 1983, 1984) and Morgan (1986) have 
rigorously justified the FE using functional analytic methods. 

Newman (1973) modified the FE and, working in spherical polar coordinates (SPC), 
converted the SE to a recurrence relation with derivative continuity as an additional 
boundary condition. Newman did not attempt algebraic summation of his expansion. 
However, his series may be summed by analytic techniques and progress in this direction 
is presented here. 

Pluvinage (1982, 1985), also working in SPC, solved the FE to second order in r not 
by conversion into a recurrence relation but instead, using a partial separation of 
variables, reduced the equations to be solved to ordinary second-order differential 
equations in one variable. This method is incorporated in recent work by Gottschalk 
and Maslen (1987). 

Previously, workers in this area have resorted to approximate techniques when they 
considered that further algebraic simplification was unlikely. However this paper 
illustrates that the wavefunction to second order in r may be completely reduced to a 
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finite sum of polynomial and logarithmic functions of the interparticle coordinates in 
addition to one irreducible integral. This reduction removes the convergence problems 
of infinite series expansions. Work in progress indicates similar, though algebraically 
more difficult, simplification for the third-order wavefunction. Moreover, the relative 
simplicity of the final results hints at the existence of straightforward techniques for 
obtaining the wavefunction to all orders. 

In the preceding paper (Abbott and Maslen 1987, to be referred to hereafter as I) ,  
HC systems for treating the few-body SE were described and analytic methods for 
treating the wavefunction by expansion into an infinite series of hyperspherical har- 
monics (HH) were presented. In 0 2 alternative coordinate systems for solving the SE 

are introduced. Formal solutions to the few-body wavefunctions are examined in § 3. 
The analytic structure of few-body wavefunctions is discussed in 9 4. Using SPC the 
‘S wavefunction to second order in r is written in closed form ( 9 0  5 and 6). The closed 
form expression is then studied to provide further information on the derivation of 
the wavefunctions to all orders in 0 7. 

2. Coordinate systems 

This section collects together the properties of several coordinate systems that are 
widely used for treating the few-body SE. As discussed in I, different coordinate systems 
have advantages when treating specific aspects of few-body wavefunctions. 

2.1. Cartesian coordinates 

In the fixed nucleus approximation, the positions of N electrons require n = 3 N  
coordinates. In Cartesian coordinates, the configuration of the electrons is specified 
by an n-dimensional vector, r = (xI, x 2 , .  . . , x , )  = ( r l ,  r z ,  . . . , r N )  where ri E W3 is the 
position vector of each electron. However, since the Coulomb potential is rotationally 
invariant under S0(3),  the Laplacian An = Z a2/axf is more conveniently factored into 
operators consistent with this invariance. 

2.2. Spherical polar coordinates 

SPC are trivially generalised to N > 1. Specifying the position of each electron by its 
own SPC, ri = ( r i ,  O i ,  d i ) ,  the n-dimensional Laplacian becomes A n  = EAi, where 

and 

Here l f  is the squared (ordinary) angular momentum operator. For details on the SE 

in SPC see Newman (1973), Pluvinage (1982), Davis and Maslen (1982, 1983a, b, c) 
and Gottschalk and Maslen (1985). 

2.3. Internal and external coordinates 

Hylleraas (1928) commenced his treatment of helium, N = 2, in SPC. He showed that 
the six coordinates may be decomposed into three external coordinates describing the 
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orientation of the triangle formed by the nucleus and the two electrons, and three 
internal coordinates specifying the size and shape of this triangle. The external 
coordinates are usually chosen to be the Eulerian angles ( a ,  p, y )  specifying the 
orientation of the principal axes of inertia of the three particles with respect to a 
space-fixed coordinate frame (Kalotas 1965, Johnson 1980). Moreover, a rotationally 
invariant potential only depends on the internal coordinates. For example, choosing 
the internal coordinates to be r , ,  r2 and 8, the angle subtended at the nucleus by the 
two electrons, the wavefunction may be written in the separable form: 

L 

* L M ( r l ,  r 2 ) =  vF(rl, r Z ,  e)DLMK(a, p, 7) (3) 
K = - L  

where the DLMK are rotation matrices which are eigenfunctions of the total angular 
momentum operator (see I, equation (8)). Restricting attention to S states, L = M = 0, 
one need not consider the external coordinates and the Laplacian becomes (Breit 1930) 

a a  a a  a a 
ar,  ar, ar, ar, ae ae  A =  r;,--r;-+ r;2-r:-+[r;2+r;Z](sin O)-'-ssin e--. (4) 

Note that the partitioning of the coordinates is reflected in the simple form of the 
wavefunction (3) and the Laplacian (4). This analysis may be generalised to lithium 
( N  = 3). After removal of the motion of the centre of mass, nine coordinates are 
required. It is easily seen that there are six internal coordinates and three external 
coordinates since the Coulomb potential, which depends on all internal coordinates, 
is a function of r l ,  r 2 ,  r 3 ,  r , , ,  r13 and r 2 3  in obvious notation. The three external 
coordinates may also be realised by Eulerian angles, in this case describing the 
orientation of the tetrahedron formed by the nucleus and the three electrons (Kalotas 
et al 1968). 

For general N 2 2 there are three external, 3 N - 3 internal coordinates and N (  N + 
1)/2 interparticle coordinates (IC).  For N24,  N ( N +  1)/2> 3 N - 3  and some of the 
IC are redundant. Note that partitioning into internal and external coordinates 
automatically yields states with good angular momentum. For any other partition the 
total angular momentum must be constructed by standard coupling techniques (Morse 
and Feshbach 1953). 

2.4. Interparticle and elliptic coordinates 

In his classic paper, Hylleraas (1929) examined the S-state wavefunction of helium 
using IC, r ,  , rz and rI2 .  In these coordinates the S-state Laplacian (4) becomes 

a a  a a  a a A = rTz - r ; -+  rT2-r:-+2rT:-r;,- 
ar, ar, ar,  ar, ar1z ar12 

in which the functions multiplying the cross-terms have a simple interpretation. By 
examining figure 1, it is seen that 

cos e, = ( r ~ + r ~ 2 - r ~ ) / 2 r , r , z  

and 
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/ X  

Figure 1. Specification of the Eulerian angles (a, p, y )  and the internal angles 0, 8, and 
02.  CM indicates the centre of mass of particles 1 and 2. 

Hylleraas, realising that the helium wavefunction has definite symmetry under particle 
interchange, introduced the elliptic coordinates (EC) 

s = r , + r ,  t = rl - r2 U = r I 2  ( 6 )  
which reflect this symmetry. Following Hylleraas (1932), the S-state Laplacian in EC 

becomes 

2.5. Hyperspherical coordinates 

The use of HC for few-body wavefunctions is discussed in I. Here we restrict attention 
to N = 2 and choose the HC r, a, t9 as the internal coordinates, where 

r = ( r t +  r;)’’ ,  y = sin a = 2r1 r2/ r2 .  (8) 

3. Formal solutions to the Schrodinger equation 

A formal solution to the SE is defined to be an expansion that is capable of satisfying 
the SE term by term, without requiring the physical boundary conditions to be satisfied. 
Some expansions can be ruled out by general considerations. For instance Bartlett et 
a1 (1935) showed that power series solutions in I C  were inadequate for helium. A 
formal solution cannot be an eigenfunction unless it is capable of satisfying the physical 
boundary conditions. These physical boundary conditions are discussed in Kat0 (1957) 
and Abbott (1986). 
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3.1. The Fock expansion in hyperspherical coordinates r, cy, 8 

Bartlett (1937) and later Fock (1954, 1958) proposed a formal solution for the IS states 
of helium in HC, now known as the FE, which is 

Expanding qkm((Y, e )  in hyperspherical harmonics ( H H )  as discussed in I, one obtains 

Recently Leray (1982a, b, 1983, 1984) outlined a proof that every solution of the 
N-electron SE may be written in the form of the FE. Morgan (1986), generalising the 
work of Macek (1967), proved that, for the S states of helium, the FE converges 
pointwise for all r. These results are examined in more detail in Abbott (1986). 

3.2. Formal solution in spherical polar coordinates rl ,  r, and Pl (0 )  

In SPC the three internal coordinates are chosen as rl , r2 and R =cos 8.  Following 
Newman (1973) and Davis and Maslen (1982) the formal solution to the SE in SPC, 

termed the NDM expansion, is written in the region-dependent form: 

(11) 

where 1, p, q 5 0 and i + j 2 0, j 3 1. Note that the expansion (1 1) depends on the ratio 
rl/r2. For q = O ,  the exponential integral term (Abramowitz and Stegun 1972) 
exp(qr)Ei(-qr) is replaced by In r. The exponential terms multiplying the summations 
in (1 1) are included so that the asymptotic form may be factored from the wavefunction 
(Fock 1954, 1958, Ermolaev 1961, Morgan 1977, Davis and Maslen 1982, 1983b). 
Setting q = 0, h l  = h2 = 0, r> = max{r,, r2 } ,  r< = min{r,, r2} and 

rl > r2 

r1< r2 

one may write 

S. i-qr)" Ei( -qr) = y + In( q r )  + 1 - 
nn! 

where y is Euler's constant and, using series rearrangement, the NDM expansion (11) 
may be written in the form of the FE (9) and (10). Hence the two expansions are 
formally equivalent. Note, however, that using Ei(-qr) instead of In r removes the 
(unphysical) zero of the logarithmic terms of the FE at r = 1, since Ei(-qr) < 0 for r 2 0. 
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3.3. Fock expansion in the coordinates r, y and R 

One system, currently being studied, utilises r, y and R (for symmetric states only). 
The wavefunction may be expanded as 

To transform between the different formal expansions (9), (1 1)-( 13), one notes 
that rl , r2 and r each have the dimension of length, and hence k = i + j .  The logarithmic 
function may be considered formally homogeneous of degree zero in r and thus does 
not have dimensions. Note that all expansions are to be solved in order of increasing 
k and decreasing p or m. Comparison of expansions for the wavefunction derived 
using different internal coordinates involves comparing terms with the same value of k. 

Writing p = r J r >  then 

In r = l n  r , + f l n ( l + p 2 ) .  (14) 

Using (9), (lo), (12), (14) and I the transformation between CijlP and g k n l m  may be 
obtained. Since YnI(a,  e) ,  defined in I ,  is proportional to Pl(R), the transformation 
between (10) and ( l l ) ,  (12) for each value of 1 is trivial. However this relationship 
does not hold for an arbitrary set of internal coordinates. 

4. Analytic structure of few-body atomic wavefunctions 

The analytic structure of few-body atomic wavefunctions may be discussed in terms 
of region dependence (§  4.1), continuity and derivative continuity (00 4.2 and 4.4) and 
symmetry and antisymmetry (§  4.3). 

4.1. Region-dependent expansions 

Before examining the NDM expansion, it is helpful to consider the archetypal case of 
the Laplace expansion of l / r12 = l / ( r > R )  where R = (1 -2Rp + P ~ ) ” ~ ,  into Legendre 
polynomials (Gradshteyn and Ryzhik 1980, p 1027), namely 

The expansion (15) is uniformly convergent for R E [-1,1], p E [0, RI with R < 1 and 
absolutely convergent for R E  [-1,1] with p E [0,1). For R E  (-1, l) ,  p = 1 it is point- 
wise convergent. For R = -1, p = 1 it is Abel summable and does not converge for 

Alternatively, using r12 = r (  1 -yR)”’, expanding r;; as hypergeometric series in R 
a =  1 ,  p =  1. 

(Srivastava and Manocha 1984, p 281) yields 

Generalised expansions which include (15) and (16) are given by Sack (1964). Further- 
more, Sack shows that the transformation between region-dependent expansions like 
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(15) and region-independent expansions like (16) is given by a quadratic transformation 
of the (Gaussian) hypergeometric function in (16). 

To make the relationship between (15) and (16) explicit we consider the quadratic 
transformation (Gradshteyn and Ryzhik 1980, p 1043) 

2a, 26 
.F1[ a + b + f ’  a’ . 4z( l -z )  ] = 2 F 1  [ a + b + f ;  ‘3 

where z is complex. The region of analyticity of each 2F, is shown in figure 2. Figure 
2 and (17) show that for x E R 

The left-hand hypergeometric in (17) is invariant under z + 1 -- z whereas the right-hand 
hypergeometric is not. However both sides of (18) are invariant under x + 1 - x. 

To make (18) physically significant we put x = ( r 2 / r ) 2 .  Hence 4x( 1 - x) = y 2  and 
x E [0, f) corresponds to rl > r2, x E (4, 11 to rl < r2 .  Setting a = 1/2+:,  b = 1 / 2  +: leads 
to 

L 

r 
< 
\ 

\ 

Y 

Figure2. Regions 1 2 / 4 1  UlJ, l l - z l ~ l  H and ) 4 z ( l - z ) l S l  R. 
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Substituting (19)  into (16 )  yields (15). This transformation is typical of those found 
in the expansions of many-body wavefunctions. A region-dependent form is often 
simpler analytically, as the right-hand side of (19 )  demonstrates. 

4.2. Continuity and derivative continuity of the wavefunction 

When a non-physical boundary is introduced into an expansion of a well behaved 
function, continuity and derivative continuity are required at the boundary. In the 
case of a many-body system, the wavefunction and its derivatives are continuous except 
at the points where particles coalesce, namely rl = r2, rl = 0 or r2 = 0 (Kato 1957). At 
these coalescences, the wavefunction and its derivatives satisfy cusp conditions (Pack 
and Byers-Brown 1966). However, for all r l ,  r 2 # 0  and 8 #O, the wavefunction and 
its derivatives are continuous. Commencing with the region-dependent NDM expansion, 
Gottschalk and Maslen ( 1985) derived the continuity and derivative continuity condi- 
tions satisfied by C,, and Cblp. In contrast, the H H  Ynl(cx, e )  and their derivatives are 
finite and continuous on the hypersphere. Hence the region-independent expansion 
( 10) has continuous derivatives everywhere except for the particle coalescences and 
there are no continuity or derivative continuity conditions applying to geknlm. 

Care is required in obtaining continuity conditions for region-dependent forms, as 
Dirac delta functions may appear when differentiating the expansions term by term. 
For instance, the derivative of the Heaviside step function is the Dirac delta function 
(Schiff 1968, p 306). 

Consider r;;; from ( 1 5 )  it is seen that 

r l  -f r2+ 

rl  + r;. 

Both sums are divergent in the usual sense. However they have meaning in the space 
of generalised functions (Kay et al 1969). Here these limits are equal; subtracting 
( 2 0 a )  from (20b)  involves (Schiff 1968, p 143) 

X 

( 2 / + 1 ) P 1 ( a ) = 4 6 ( 1  -a). (21 )  
I = O  

For a #  1 ,  ( 21 )  is zero and hence ar;;/arl is continuous at rl  = r2.  Furthermore, the 
presence of delta functions indicates that the convergence near rl = r2 will be slow. 
This is expected as r;: is infinite and dr;i/ar,  is discontinuous near r l = r 2  (Lakin 
1965). In comparison, using the region-independent expansion (16 )  one finds that 

Series ( 2 0 a )  equals (20b)  except for Cl = 1 ,  from (21 )  above, and thus by adding ( 2 0 a )  
and (20b) ,  (22)  is seen to be equivalent to (20 ) .  Furthermore ( 1 5 )  shows that ( 2 0 a ) ,  
(206)  and (22 )  are all equal to -2 -3 /2r ;2 (  1 -a)-' /2 for a #  1 .  

These characteristics of region-dependent and independent expansions of r;; are 
typical of many-particle wavefunctions. 
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4.3. Symmetry and antisymmetry of the wavefunction 

For a symmetric potential the wavefunction has definite symmetry. However, using a 
general Coulomb potential for a system of nuclear charge Z and N charges Z, 

leads to asymmetric states. It is desirable to decompose these into symmetric and 
antisymmetric pieces. Two points are especially relevant to the discussion of many-body 
wavefunctions. 

(i)  Infinite expansions of symmetric or antisymmetric functions may not possess 
the same symmetry as the individual terms. This depends in particular on the domain 
within which the expansion is defined. 

( i i )  An antisymmetric function may be made to appear symmetric by taking its 
absolute value. Square roots with fixed sign lead to absolute value functions. 

Consider the Coulomb potential (23) for N = 2: 

where ps = ( F ~  + p2)/2 and pA = (pl  - p2)/2. This factorisation clearly displays the 
symmetry of the terms in (24). Using (24) is no more complicated than working with 
a symmetric potential. Moreover, the final result includes all the special cases of 
interest. To preserve invariance of the potential (24) under the interchange of rI and 
r2 one must also swap pI and p2 .  This must apply when transforming a region- 
dependent expansion of the wavefunction for r ,  > r2 into one for rl < r2.  

For example, in 06 the region-dependent expansion for rl > r 2 ,  k = 2, 1 3  2 contains 

and 

; Y ’ ] .  
112 - f ,  1/2+; 

I +; r’(P1 - P2)Y”FI [ 
Both (25) and (26) appear superficially to be symmetric. Note that (25) is region 
independent, but for rl < r2 (26) is multiplied by -1. This region dependence can be 
removed by using Euler’s transformation for Gaussian hypergeometric functions (Rain- 
ville 1960, p 60) and 

( I  - y2)”’ = Ir$ - r:l/ r’ 
yielding 

Hence (26) becomes 

which is antisymmetric and region independent. Note that (pl - p2) lr ;  - r:l for rl > r2 
is just (pl  - w 2 ) (  r ;  - r:)  and for rl < r2 becomes (p2  - p l ) l r ? -  r:i which also equals 
( P I  - -P2)( r ; - r : ) .  
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The Euler transformation is not valid for rl = r2 and in the limit r l  + r2 the ZF1 in 
(27) is divergent. However the correct limit can be obtained from the original series 
(26) yielding 

(Pl - C L 2 ) 2 r : r ( 1 + m f )  
r(1/2+2)r(1/2) . 

4.4. Derivative continuity of the Fock expansion in HC 

The Fock expansion in HC requires no additional derivative continuity conditions 
( $  4.2). From I the k = 2 term of the wavefunction, 920, contains 1x1 = Ir:- &r2, 
a = sin-ly and p = r, /  r ,  that separately have discontinuous derivatives. However 

and hence (1 -2y2)a/y-  1x1 has a continuous derivative. Derivative continuity is 
satisfied for the region-independent Fock expansion generally, even though the partial 
summations in I contain terms that are separately region dependent and possess 
discontinuous derivatives. This provides a useful check on the results presented in I 
and is helpful when examining higher k lines. 

5. The wavefunction io spherical polar coordinates 

The wavefunction in HC has been described in detail in I. Here we concentrate on 
SPC. The formal solution to the SE in SPC is given by (11). A recurrence equation for 
coefficients CijIp is obtained by substituting the trial solution (11) into the SE and 
equating the multipliers of powers of r l  , r2 and exp( qrl)Ei(-qrl)  for each of the 
Legendre polynomials. The Coulomb potential in SPC requires the expansion of r;: 
given by (15) or (16). To enable the indices of P,(R) to be evaluated the product of 
Legendre polynomials is linearised (Gradshteyn and Ryzhik 1980, p 1026) 

I 

where In - mi s 1 s n + m and ay" is a squared Clebsch-Gordan coefficient which may 
be evaluated yielding 

ajnm-r = 
(21 + 1)r(1/2 - s /2  + t)r( 1/2 + ~ / 2  + t)r( m + 1 / 2  - s / 2  + i)r( m - 1 /  2 - s / 2  + f )  

2 d (  112 - s /2+ i)r(1/2 + ~ / 2 +  i ) r ( m  - z/2 - ~ / 2 +  i ) r ( m  + 1 /2  - ~12-t:)  * 

Since the recurrence relation is obtained from term by term differentiation, the 
validity of the resulting solution must be justified. It is assumed that the solution is 
uniformly convergent in a region of non-zero size, permitting term by term differenti- 
ation in that region. The range of validity can be extended by analytic continuation 
to the interval for which the series solution converges. The form of the coefficients 
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presented later in this paper indicates that the solution obtained converges to the true 
wavefunction everywhere. 

The recurrence equation does not specify all the coefficients. Most of these remain- 
ing are specified by the requirement that the wavefunction and its derivatives be 
continuous. If the potential multipliers pI and are equal, and the wavefunction is 
either symmetric or antisymmetric in rl  and r 2 ,  further coefficients are specified. The 
values of coefficients not yet determined are related to the normalisation of the 
wavefunction. To evaluate these algebraically requires a knowledge of the asymptotic 
form of the wavefunction, as described by Davis and Maslen (1982, 1983b) who 
calculated the coefficients for the ground state of helium numerically. 

The equations specifying the coefficients, apart from those determined by normalisa- 
bility, are summarised in the appendix. Using these equations any C,, and CL, can 
be written as nested infinite sums, increasing in number with k. This procedure is 
suitable for numerical calculation but it is desirable to reduce the number of infinite 
series when the analytic form of the wavefunction is derived. 

The coefficients with k = 0 and k = 1 follow from a straightforward application of 
equations ( A l ) ,  (A2) and (A4). For k = O  Cbooo=Coooo. If pl equals p 2 ,  and an 
antisymmetric wavefunction is required, Coooo = 0; otherwise its value is determined 
when the wavefunction is normalised. 

For k = 1 the non-zero coefficients are 

Cl000 = ( A  1 + EL 1 + EL 121 2) w mm 
c1-///0= -EL1*~0000/[2(2~- 1)l  

Co100= (A2+EL2)C0000 c-1200 = /1l2/6~0000 

c- 1 - / / + 2 / 0  = EL 12 ~ o o o o /  r 2(21+ 3) 1 13 1 .  
(28) 

Coefficients CLIP are the same as these with p1 and p2 interchanged (see 0 4.3). 
The k = 2 coefficients with 13 2 are completely specified by ( A l )  and (A2). All 

coefficients with p 1 vanish. To evaluate the p = 0 coefficients the summation due to 
the interparticle potential terms in R(2, 1, g, 0) and R’(2,1, g, 0) must be reduced. For 
g 3 4 this potential term in R(2,1, g, 0) is 

/ ( 2 1 - 2 ~  - 3 + g )  - EL ; 2 /  2 ~ o o o o  
a ; - 1  + 9 /  21-s - 1 + g / 2  

s = o  

I 

+ EL*:2/2c00m c a ; - 2 + g / 2 1 - s - 2 + g / 2  /(21-2s - 1 + g )  
s = O  

Davis and Maslen (1983a) showed that the sum vanishes by repeated application of 
a binomial identity. A simpler proof involves writing (29) in terms of generalised 
hypergeometric functions (Bailey 1935): 

The 3F2( 1 )  reduce to single terms using Saalschutz’s theorem (Rainville 1960) and the 
sums of the 3F2 vanish. 

This result is important because it enables the infinite sum over g to be truncated. 
The zero value for this term results in R(2,1, g, 0) and R’(2,1, g, 0) being zero for g 3 5. 
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This emphasises the need to simplify the infinite sums containing the Clebsch-Gordan 
coefficients associated with the potential term. The non-zero 1 2  2 coefficients are 

( P I  +- ” + ”-) Coooo + A( 2,1,0) 1 2 2  
61(21-1) 3(1-1) 2(21-1) C2-aro = - P I 2  

Cl-rr+lro = - P I 2  (2( l+ 17;21- 1) +A) 2(21- 1) C,,, 1 2 0  

1 2 1  

1 
c-/-11+310= PI2 1 2 0  

When the 1 = O  and 1 coefficients are calculated using (Al) ,  (A3) and (A4) it is seen 
that the expressions for some 1 2 2  coefficients extend into the lower I values. The 
expression for C2-I-2n2n+110 is valid for all 1 2 0 .  This term also forms part of the 
expression for C2-rrro and C-11+210. The other non-zero coefficients are 

G o o 0  + C;OOO = { ~ ; 2 / 6  + ~ 1 2 [ ( 3  -In  PI + ~ 2 )  + 6A1I/6 + ( P ;  + PL:)/~ + (7A; + A:)/6 

+ A I ( P  1 + ~ 2 )  - ~ / 3 1  Coo00 

Cl 100 = ( A  1 + P 1) ( A  2 + P2) coo, + P 12( A 2 + P2)/ 2 ~ 0 0 0 0  

CO,, = ( A 2  + P2)(2A2 + ~ 2 ) / 3  ~ 0 0 0 0  + ( A  1 + P 1) (2A 1 + P 1 )/ 3 ~ 0 0 0 0  

+ P 1 2 [ 2 ~  1 + +P 1 + 5 ( n - 2) ( P 1 - PJ/  ( 12 n ) I/ 3 coo00 

( P  :2/6 - &/3)  coooo - c2000 

C~OOI = - P I ~ ( ~ - ~ ) ( P I  - ~ 2 ) / ( 6 ~ ) C o o o o  

C020l = P 1 2 ( ~ - 2 ) ( P l - P 2 ) / ( ~ ~ ) ~ 0 0 0 0  

~ I I I O ~ ~ ~ I I O ~ ~ P I ~ ~ P I ~ P ~ ~ ~ ~ ~ ~  In 2)/6C0000 

CIIII = - 1 * 1 2 ( 2 - ~ ) ( C L I + P 2 ) / ( 3 ~ ~ ~ ~ O O  (31) 

where E = E+A:/2+A:/2. 
The values of CLIP are obtained from the expression for C,,, by interchanging p1 

and p2 in (30) and (31). The coefficients listed above specify the k = 0, 1 and 2 terms 
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in the three-particle S-state wavefunction ( 1  1 )  completely, except for the values deter- 
mined by normalisation of the wavefunction. 

6. Summation of series arising in the spherical polar expansion 

The formal series ( 1  1 )  contains a fourfold summation. The sums over i, j and 1 are 
infinite while that over p is finite, terminating at [ k / 2 ] .  It is desirable to express the 
wavefunction in a more compact form. 

6.1. The k = 0, 1 terms of the wavefunction 

The k = 0 series contains one term only. The k = 1 series is reduced using the expansion 
a 

r I2  = c P/(Cl)[r2pf f1(21+3)- '  - r ,p1(21-  1 ) - ' ]  rl > r2 .  
I = O  

The k = 1 terms in series ( 1  1 )  simplify to 

COOOO[(A + pI) rl+ ( A 2  + ~ ~ ) r ~  + p12r12/21  exp(-A rl - A2r2) rl> r2 ( 3 3 )  

in agreement with Slater (1968)  and Abbott and Maslen (1986) .  

6.2. Reduction of the k = 2 terms 

The k = 2  terms in ( l l ) ,  
x a  

c2-JJ/pr:-J rz' Lexp( 4'1) Ei( -4'1 )IpP/( ' ) /p  ! rl ' r2 
I,p=O ] = I  

separate into three main groups. The 1 = 0 and 1 terms contain the infinite series, in 
hypergeometric notation, 

r : ~ o o o o p ~ ~ 1 2 [ 2 ( ~ I  - P A +  ~ T ( P ~ + P J I ~ F ~ ( ~ ,  1 ,  t ;  3,  I ;  -p2)/(12o.rr)  

- ~:~cooooP5P12[2(P l  + P J  + d P 1  -F2)13Fz(1,2,k 3 ,  f; -P2)/04O.rr) .  
( 3 4 )  

There is no unified form for the coefficients C2-,,, with 13 2 and j = 1, 1 + 1 ,  1 + 2 or 
1 + 3,  but for j 3 1+4 all C2-,,, have the same form. The series 

is best written in two parts: 

r r -  -- A I  '1 ) r i  
2(21+3) 21(21+3) ( +(2(1+ 1)(21- 1 )  2(21- 1 )  

P2 

1 r : r ; l }p /p I (R)  ( 3 5 )  
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and 

The infinite series (34) may be related to hypergeometric functions of the type 
2Fl(1, a ;  a +  1; z) by the use of the contiguous relation (Rainville 1960, p 82) 

( U i  - a,)F = a ,F(a ,+  1) - U j F ( U ,  + 1) 

where the abbreviated notation 

F=,F,(a, ,  a,, . . . , a,; b l , .  . . , b,; z)  

F ( a i + l ) = , F q ( a l  , . . . ,  a i + l  , . . . ,  a,; bl ,  . . . ,  bq;z)  

has been used. 
Abramowitz and Stegun (1972) list the evaluation of this 2F1 in terms of logarithmic 

or tan-' functions for particular values of a. This extends to more general values of 
a yielding 

a-2  

, F 1 ( l , a ;  u + I ;  ~ ) = - a z - ~ I n ( l - z ) - a z - "  C z ' " / ( i+ l )  
i = O  

where a E Z+, IzI < 1 or z = -1, 

, F ~ ( I ,  a ;  a + l ;  - ~ ~ ) = 2 a z - ~ " ( - 1 ) ~ - ' / ~ t a n - '  z + ~ u ( - z ~ ) ' / ~ - "  Y (-z2), /(2i+1) 

where ( 2 a ) ~ Z ,  but u g h ,  l z l s  1. 9'iPgIi is the generalised sum interpreted as XSZi for 
p < q, -Xf:i for p > q, and as zero when p = q. These relations enable (34) to be 
written in terms of logarithmic and tan-' functions. 

Part of the infinite series (35) reduces using (32). The remainder may be written 
in terms of the series 

- 1  

i = a - 1 / 2  

where n is an integer. For n 2 1 this can be summed using (15) and interchanging the 
sum and integral yielding 

cc c pfP1(f l ) / ( l+n)=p-"  t " - ' / ( l - 2 ~ 1 t " ) ' ' ~ d t .  
f = O  

(37) 

Expressions for n E { -2, . . . ,4}  are listed by Gradshteyn and Ryzhik (1980, pp 83, 85). 
McIsaac et a1 (1987) obtained a general expression valid for all n. 

The reduction of the infinite series of Legendre polynomials and hypergeometric 
functions (36) is the most complex part of this work. The transformation of the 
( p I + p 2 )  multiplier in the series is analogous to that for the ( p l - p 2 )  term, but the 
latter is marginally more complicated. Therefore only the reduction of the (pl - p 2 )  
multiplier is described except for differences between the two series which are indicated. 
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The ( p , - p 2 )  series (denoted by d below) is first cast in a region-independent 
form using (27 )  from 5 4.3 

pI2(pI - p 2 ) ( r : -  r 3  r ( i 1 2 ) u w +  ~ ) P , ( n ) y ' ~ ~ , [  1/2+2,1/2 &= c 1 2 r ( f )  I = 2  r(i+f)(i- 1 )  

Euler's transformation is valid for r l  > rz but not for rl = r 2 .  The following assumes 
that r2 is strictly less than rl and an expression defined on the boundary is then sought. 
This difficulty does not arise for the ( p I  + p2)  term. 

Elementary series rearrangement yields 

where 

[ ' I 2 - ' ]  PI-2,(R)(21-4t+ 1 )  
Zo ( t ) l - , ( l - 2 t + 2 ) ( 1 - 2 t - l ) t !  

where should be compared with ( A l )  of I .  Substituting the expansion for Legendre 
polynomials yields 

[ / /2-11 ( - l ) k ( t ) r - 2 , - k ( 2 s z ) ' - 2 r - 2 k  
(39 )  

This double series is reducible to single series by rearranging so that the exponent 

[I/2--11 (21 -4 t  + 1 )  
k !  ( I  - 2t - 2 k )  ! f ,(fl)= c 

r=O ( $ ) I - , (  1-2t + 2)(  1-2 t -  l ) t !  k = O  

of SZ contains only one summation index, using identities such as 

2 ' g ' f ( t ,  k ) =  c 2 f ( u / 2 + v / 2 ,  u / 2 - v / 2 )  
r=O k = O  u = o  u=-u,2 

where f is an arbitrary function. Application to (39 )  requires the separation of the SZo 
and SZ' terms from the double sum. For even I this gives a single series in t ,  representing 
the no term, and a double series over the indices U and U. Reversing the U and v parts 
and using hypergeometric notation yields, for even I ,  

( 2 ~ ~ ) ' - ~ " ( 2 1 -  4~ + i)r(i - 2u + ;) 
u ! ( I - ~ u ) ! ( ~ - ~ u  - i ) ( i  - 2 ~  + 2 ) r ( 1 -  +;)2 + 'Y' 

; 1 1 .  
- u , 1 / 2 - u - ~ , 1 - 2 u + f , 1 / 2 - u + 1 , 1 / 2 - u + ~  

2 -  U + 112,;- U + 1/2,2- U + 1,2 - U  + 112 M [  1 

Using standard identities one obtains 

' SZU2'(1+1) 2'1 f,(n)=,,Z,2 (U - i ) r ( i + 3 ) - 2 r ( i + 3 ) *  

The reduction in complexity when compared to the previous expression forf;(R) (39 )  
is dramatic. The hypergeometric series multiplying the R" part of f;(R) for odd I and 
U 5 2 is as for even 1. The function multiplying RI is a 6F5( 1 ) .  Writing this as a well 



2092 J E Gottschalk. P C Abbott and E N Maslen 

poised 7F6( 1 )  and applying the transformations to Saalschutzian 4F3( 1 )  (Bailey 1935, 
ch 7 )  yields 

This is a simple finite summation. Substitution into (39) reduces J (R)  to 

( 1 - 3 ) / 2  1 c 3R7r1'2 
I R"2'(1+ 1 )  - 

fi(n)=u5,2 ( u - i ) r ( i + 3 )  2r(1/2+2)r(1/2+;) ( 2 t + 2 ) ( 2 t + 5 ) *  

A useful form for f i ( Q )  involves the integral representation, achieved using a 
transformation similar to (37). Taking the summations inside the integrals gives finite 
geometric progressions. Inserting this representation for f ; ( Q )  into the expression for 
series d (38) ,  and exchanging the order of integration and summation over 1, enables 
the summation to be written as 2F1 of variable argument. These reduce to elementary 
functions using standard transformation formulae (Abramowitz and Stegun 1972, ch 
15) .  

It is instructive to describe this procedure for part of the expression for d. For 
even 1 the Q", U 3 2 part of f i ( Q )  becomes 

d x. - - ' R"2'(1+1) 
u=2 ,2  c (U - i ) r ( 1 + 3 )  

This part of d simplifies by interchanging the summations with the integral and 
reducing the 1 sum. This requires the evaluation of two series of the form 

r( 112 + 2 ) r  (1/2)( I + 1 )  Z' 

1=2,2  f r ( i + 3 )  

with z = 2y in one case and z = 2yx in the other. Writing this as a 2F1 and reducing 
these functions by standard formulae yields 

z / ( 4 -  z2)1'2 sin-'(z/2). 

The resulting integral can be partly reduced, leaving an irreducible integral, resulting 
in 

(41) 

Note that 

= -In( -r l  + r2 + rI2)  + In( rl + r2 - r12) - In( rl - r2 + r 1 2 )  + In( rl + r2 + rI2)  

where Qo is a Legendre function of the second kind (Abramowitz and Stegun 1972, p 
333). 
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Series (36) can be reduced completely using this technique. Combining the sim- 
plified forms of (33)-(36) with the remaining terms yields the compact form for the 
three-particle wavefunction to second order in r: 

W r l ,  r2, r12) = exp(-Alr1 - A2r2) 

P I 2  P I 2  + ( A  + p2)  r2 + 1 r12 + 7 ( ~ P S  Y2 I - PA y20) 

ln(r l+r2+r12)-- ln  IT  r +  ( - .n?r2)[exp(qrl)Ei(-qrl)-ln rl l  

+ b ( / . . + y 2 0 - 2 P A Y 2 1 )  P I 2  2 1 / 2  $ln[r12(2r2-r12) + r:-ri]-ln(rl - r2+r I2 )  

3 1 
2.n 

1 + R + (1 - y2)1’2 Jon x sin-’(yx) dx 
-- sin-’ y In( -) 1 - 0  

rr ( l - x 2 ) ( l - y  2 x 2 ) 1 / 2  

+ w [ r 1 r 2 (  3 I--sin-’y T 2 ,  +2r12(r1-r2) I 

(42) 
where Y2, = 2( r: - r:) and Y2, = r2 - r:, are solid harmonics tabulated in I. This may 
be compared with the work of Pluvinage (1950) and Hylleraas (1960), whose results 
are incorrect in not having a continuous derivative at rl = r2. Gottschalk and Maslen 
(1987) commence with the (unphysical) solutions of Pluvinage and Hylleraas and 
show, using solutions to the homogeneous differential equation (i.e. Laplace’s 
equation-see equation (54)), how to construct the physical eigenfunction given by (42). 

The multiplier of the integral in (42) is proportional to (psyr0 - 2PAY21)(r: - ri) /r2,  
differing from the multipliers of the other terms because of the (r: - r:)/r2 factor. This 
is the only term with a length variable in the denominator. The anomaly is removed 
by transforming into an expression containing Lobachevskiy’s function (Gradshteyn 
and Ryzhik 1980, p 933), 

L ( x )  = - lnlcos ti dt. J: 
The resulting expression is more useful when differentiating the wavefunction. 
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Integration by parts yields 

x sin-'(xy) dx - r2 sin-'( 7) r2 - 4, 

x{1n[rI2(2r2- r:z)L/2+ r : -  r:]  -1n[r12(2r2-r:2)1'2- r :+  r : ] }  
R 

2 2 I / 2 -  (1 -y  x ) (1 - y y  

Using y = sin a and yx = sinp '  yields the integral in the required form, and the complete 
term in (42) becomes 

+ L( Ir-; + p )  - L( 5 7 - ;  - p ) ]  

where p = sin-'(yR). The result agrees with Pluvinage (1985). 

(43) 

6.3. Examination of the second-order wavefunction 

Kat0 (1957) showed that the wavefunction for a system of particles interacting via the 
Coulomb potential cannot be singular at any point. In the compact form of the 
wavefunction to second order several terms are singular for particular values of rl , r2 
and rI2 .  Such singularities must cancel since the total wavefunction is well behaved. 

Four cases require examination. 
(i) Three-particle coalescence, rl -+ r2 += rI2 + 0. The log terms are multipled by 

(ii)  One particle at the nucleus, r 2 + 0 ,  r l +  rI2 (y+O and s Z + O ) .  The singular 

(iii) Two-particle coalescence, rl -+ r:, r I 2 +  0, (fl + 1). For rl -+ r 2 ,  i.e. y + 1, the 

vanishing polynomials. 

ln[(l +fl)/( l  -R)]  is multiplied by a vanishing sin-'y. 

integral in (42) becomes 

However this term, being multiplied by ( r :  - r : ) ,  vanishes in this limit. (This can also 
be deduced from (43).) The singular terms are 
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yielding for rI + r2 

As In rI2 + 4 In( 1 - R) + In r and In[ rI2(2r2 - rf2)1'2] + 2 In r + 4 In( 1 - a'), expression 
(44) vanishes for all R. 

(iv) The particles colinear, r I2  = rl * r2, (R = 7 1). The singular terms are In[( 1 + 
a)/( 1 - R)] and the integral in (42). Using integration by parts with respect to (1 - x2)-' 

) dx. 
l + x  sin-'(xy) 

(45) 

The last integral is simplified by noting that 

2z2F1( 1,2; $; z2) = z( 1 - z2)-' + (1 - z2)-3'2 sin-lz. 

The integral containing this 2F,  is well behaved in the limits of r12 + rl * r2. Thus the 
singular part of the integral (45) has been factored out. With the correct multipliers 
the singularity in (45) cancels with the sin-' y In[( 1 + R ) / ( l  -a)] term in the limit, 
leaving the integral 

lo*' x In( E ) 2 F l ( 1 ,  2; $; x2y2) dx. 

This has not been simplified but a less complex form is obtained from the original 
double summation (41) for R = *l. 

The integral representation (40) for the innermost sum can be evaluated for R = 1 
(Gradshteyn and Ryzhik 1980, p 301) yielding 

dx  = [4(1/2+4) - $(4)]/2. 

This also gives the value for R = -1 as the integrand is symmetric for even 1. The 
double sum in (41), evaluated using Erdelyi (1954), is 

Hence, for R = * 1, 

= f y2'+2 ~ o m e x p ( - t / 2 ) t ( l  -e- ' ) /  d t  = -4y2 (1 -y2+y2x2)- '  In x dx 
/=0 

using Abramowitz and Stegun (1972). This yields the reduced form of the right-hand 
side of (41) in the limit of r I2+ rl * r2. 

This integral may be compared with (46), the equivalence being 

I,' ' x In( 2) 2F1 ( 1,2; $; x2y2) dx  = 'F ( 1 - y2 + y2x2)-'  In x dx  Y E  LO, 1). 
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This relation has not been proved directly but has been checked by numerical quad- 
rature. 

The results here should be contrasted with the discussion of the FE in HC (§ 4.4). 
There the expansion of the wavefunction is continuous and region independent but 
appears to have a discontinuous derivative. Closer inspection shows that the wavefunc- 
tion indeed has a continuous derivative except at the particle coalescences. Here the 
wavefunction itself appears singular but in the relevant limits all singularities cancel. 
Furthermore, the derivatives of the wavefunction may also be shown to be continuous. 

7. Insight from the k = 2  reduction 

The reduction of the k = 2 line using the HC in I and that using SPC given in 9 5 above 
is tortuous, and in contrast to the simplicity of the compact form (42). One may ask 
whether equation (42) for k = 2 is in the form ‘best’ suited to solving higher k lines. 
We consider ‘best’ to be a form consistent with the structure deduced for the higher 
k lines which minimises complexity in their reduction. Several characteristics of the 
k = 2 line given by (42) are relevant in deriving that structure. 

7.1. Simple expansions for  the Coulomb potential 

In the derivation of k = 2 in HC ( Q  5.3 of I) one expands the Coulomb potential in HH. 
A double summation over H H  with complicated coefficients must then be reduced to 
compact form. After one summation the expansion is in Legendre polynomials. This 
could be obtained more directly by proposing an expansion in Legendre polynomials 
at the outset (0 3.4 of I). In SPC one expands the Coulomb potential in Legendre 
polynomials and then, since the expansion of the wavefunction is similar, linearises 
the product of two Legendre polynomials obtaining Clebsch-Gordan coefficients. 
Summation over the Clebsch-Gordan coefficients is required to obtain a compact form. 
The difficulty common to HC and SPC is that the expansion of the potential leads to 
complicated coefficients. This would be alleviated in coordinate systems with simpler 
potential expansions. For example, in the coordinates r, y ,  R =cos 0 (§ 3.3), the 
(symmetric) Coulomb potential is 

and the coefficient of R in the product of the wavefunction (13) and the potential (47), 
required for computing the k = 2 line (see equation (38) from I), is trivial. Moreover 
the solution for k = 2 in this system obtained by rewriting (42) is also simple. From 
(41) one sees that the expansion in r, y and R of the irreducible integral in (42) is 
straightforward. Substituting (13) into the SE produces a three-term recurrence relation, 
compared with the two-term one for (1 1). This has been solved for all k (McIsaac 
and Maslen 1987). 

The form of the potential is simplest in IC or EC. One may ask therefore if the 
wavefunction should be expanded in those systems. This is feasible in a formal sense; 
the difficulties are twofold. The lesser problem is the complexity of the Laplacian 
given by equations (5) or (7). The more important difficulty is that a straightforward 
expansion of the irreducible integral in (42) in IC or EC has not been obtained. This 
suggests that the form of the wavefunction in these coordinates is not simple. Note 
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however that all other terms of (42) are simple functions of I C  and the problems with 
I C  would decrease dramatically if the irreducible integral could be expressed in a 
suitable form. 

Summarising, difficulties associated with determining k = 2, and hence higher k 
lines, arise from the complexity of the potential expansion. However, there is a trade-off 
in complexity between the kinetic energy (Laplacian) and potential energy terms. One 
must look for an 'optimum' coordinate system. Workers using HC often emphasise 
the simplicity of the Laplacian (Knirk 1974). This simplicity is important for functional 
analytic methods which rely on the fact that the kinetic energy 'dominates' the potential 
energy (Kato 1957, Morgan 1986). However, even though the Laplacian appears simple 
in HC (equation (3 )  of I ) ,  expansions into H H  are complicated and are not suitable 
for analytic computation. Both r, y ,  R and I C  have advantages when compared with 
HC or SPC because both avoid sums over Clebsch-Gordan coefficients. 

7.2. Propagation of k = 2 into k = 3: avoiding the potential expansions 

In 0 5 of I the propagation of the solid harminics Ykf for even k into the succeeding 
k line involves determining the coefficients in a polynomial of degree ( k  + 1 )  in IC, from 

(48) 

The results are tabulated as Pyi /  in table 4 of I. This technique may be generalised. 

(49) 

(50)  
where a3 is presently undetermined and CZ0 and C,, are obtained from (42) and (49). 
To determine a3 one substitutes (49) into the k = 3 differential equation (equation 
(36) of I )  

(51 )  
Consider for example, the term from the k = 2 line, In( r ,  + r2 + r , , )  Y,,. Using ( 5 ) ,  one 
obtains 

~ ~ \ V [ k . f l  - 
k + l  -2Vykf. 

From (42) and (43) one sees that the k = 2 line can be written as 

9 2 = ~ 2 + C z o ( r , ,  r 2 1  ~ l 2 ) Y 2 0 + ~ 2 I ( ~ l ,  r2,  r12)Y21. 

~ ~ = a ~ + c , ~ ( r , ,  r , ,  ~ , , ) P Y ~ ~ ~ +  c,,(T,, r 2 ,  r , , ) ~ h ~ * ' ]  

This suggests that for k = 3 

A P 3  = 2 VP2 - 2 E P I .  

af ag  af  ag af dg Afg=fAg+gAf+2--+2--+4--+2~0~ 0, 
ar,  a r ,  dr,  dr2 ar , ,  ar , ,  

ar ,  ar, ,  ar , ,  ar, 
+ 2  cos 0 , ( 2  *+af 2). 

Examining the function 

In(r, + r2+ r , , ) ~ ? , ~ ]  (52) 
since any derivative of In( rl  + r2 + r , , )  is proportional to ( r ,  + r2 + rI2)-' and A In( rl + r2 + 
r I 2 )  = ( r l +  r , ) / ( r , ~ - , r , ~ ) ,  one sees that using (48) 

A[ln(r,+r2+r,2)~~~'1]=2V[ln(r,+r2+r,,)Y2,]+R(r,, r z ,  rI2) (53) 

where R is a rational function of rl , r, and r , , .  
Solving for a3 in (50) may be simpler than solving P3 in (51) directly. Comparing 

(53)  and (51 )  one sees that ( 5 2 )  solves the potential piece of (51) while avoiding some 
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of the complicated potential expansions. The logarithmic function is also replaced by 
the rational function R. This analysis may be generalised to include the irreducible 
integral in (42). Hence the calculation of the propagation of k = 2 into k = 3 is simplified 
using (50). Note however that this approach must be modified for the propagation of 
k = 3 into k = 4 since, for each even k line, there arises k/2 + 1 H H .  Furthermore, care 
must be taken to ensure that the solution a3 has a continuous derivative. This is 
hiscussed by Gottschalk and Maslen (1987). 

7.3. Variation of parameters 

Ordinary non-homogeneous second-order differential equations may be solved by 
variation of parameters (Boyce and DiPrima 1969), if one knows the fundamental set 
of solutions of the corresponding homogeneous differential equation. From I, the 
non-homogeneous (partial) differential equation for k = 2 is 

(54) 

and the general well behaved solution to the homogeneous equation, which is Laplace’s 
equation, becomes 

AY2 = 2 V Y l  - 2 EYO 

where Yi is the complementary solution and and Czl are constants. Note that 
since (54) is a partial differential equation the HH YZ1(  I = 0 , l )  are selected from all 
possible solutions by requiring them to be finite and continuous on the hypersphere. 
Assuming that the method of variation of parameters extends to partial differential 
equations one may propose that the particular solution, Y:, is of the form 

C z I ( r l ,  r2,  r I 2 )  for I = 0 , l  could be determined by substituting (55) into (54), imposing 
additional conditions as required. Equations (42) and (49) confirm that the majority 
of terms have the form ( 5 5 ) .  The additional term a2 must arise in generalising the 
method of variation of parameters to partial differential equations. 

Alternatively, one can consider not only the well behaved solutions to the 
homogeneous equation (i.e. the HH),  but also more general solutions to Laplace’s 
equation obtained by relaxing the requirement that they must be well behaved 
everywhere. These solutions are therefore unphysical. However Gottschalk and Maslen 
(1987) show that, by firstly solving equation (54) without requiring derivative continuity 
at rl = r z ,  and then adding appropriate linear combinations of (unphysical) solutions 
to Laplace’s equation possessing cancelling discontinuities, one may construct the 
physical solution to (54) in a straightforward fashion. 

7.4. Mixed coordinate representation for the wavefunction 

The discussion on the compact form (42) indicates that different terms in the k = 2 
wavefunction simplify when expressed in the most appropriate system of coordinates. 
This is not just a cosmetic alteration, for it gives insight into the structure of higher k 
lines. For example, P 7.1 shows that the irreducible integral is simpler when expressed 
in terms of r, y and R. Section 7.2 extends the methods of I, proposing the propagation 
of even k lines into odd k lines by construction from the even k wavefunction and 
polynomials of suitable degree in IC. Section 7.3 suggests that the wavefunction for 
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even k lines could be obtained by variation of parameters utilising the H H .  That is, 
we suggest that several coordinate systems and methods be used when determining 
the terms in the wavefunction as classified in $9 7.1, 7.2 and 7.3. Pluvinage (1982) 
examined the two-electron wavefunction from this point of view but does not classify 
the terms in the k = 2 line explicitly. The techniques of Pluvinage and 9 5 both utilise 
SPC. However, whereas in § 5 the wavefunction is expanded into a multiply infinite 
summation of P , ( n ) ,  Pluvinage utilises a (partial) separation of variables, reducing 
the equations to ordinary differential equations involving a single sum of P,(R). 
Pluvinage recognised that solving k = 3 in SPC involves summing over Clebsch-Gordan 
coefficients. The method of § 7.2 which generalises techniques proposed by Ermolaev 
(1961) may resolve these difficulties by avoiding summations. Once higher k lines 
have been compacted, additional structure that has not previously been classified may 
emerge. 

7.5. Alternate methods for obtaining the few-body wavefunction 

So far the methods applied to solving the few-body wavefunction are all generalisations 
of classical techniques for ordinary differential equations. In I, power series solutions 
are generalised to include logarithmic functions. The wavefunction to k = 2 resembles 
a solution obtained by variation of parameters. Another technique applicable to this 
problem is the conversion of the partial differential equations into equivalent integral 
equations using Green functions (Dettman 1969). Since variation of parameters and 
Green function techniques are closely related (Whitten and McCormick 1975), one 
expects from § 7.2 that Green functions will be useful for many-body wavefunctions. 
Investigation along these lines by Bartlett (1937) reached the discouraging conclusion 
that to solve the resulting integral equation one would be forced to expand the 
wavefunction. This would have no advantage compared to solving the differential 
equation directly. However Pluvinage (1985) recently used the Green functions given 
by Fock (1954, 1958) to evaluate the symmetric k = 2 wavefunction. This should 
encourage further work using Green functions. 

7.6. Use of the wavefunction up to k = 2 

The wavefunction up to k = 1 has been examined by Abbott and Maslen (1986) where 
it is shown that the first-order wavefunction is determined by its form at the Coulombic 
poles, or equivalently, by the cusp conditions (Kato 1957). The ground-state energy 
from the first-order wavefunction is in good agreement with the exact value. One 
expects that the second-order wavefunction will give a much better value for the 
ground-state energy, which should converge rapidly to the exact value as k increases. 
Furthermore, any physical property involving matrix elements of the wavefunction to 
order k will also be a rapidly convergent function of k. 
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Appendix. The spherical polar treatment 

Gottschalk and Maslen (1985) described the procedure for evaluation of the coefficients 
appearing in the series solution ( 1  1 )  of the three-body S-state SE using SPC. The method 
is summarised here. 

The coefficients vanish in the region with j < 1 and i + j  < 0. Coefficients with j = 1 
are determined by requiring the wavefunction and its derivatives to be continuous or 
by the requirement of a normalisable wavefunction. The recurrence equations obtained 
by substituting the trial solution into the SE specify the remaining coefficients in terms 
of the j = 1 coefficients. 

Introducing variables g and k such that j = 1 + g, g 5 0 and i + j  = k, k 5 0, the order 
of solution is that of increasing k starting at k = 0 .  For every k line the order is of 
decreasing p and for every p the order is of increasing g starting at g = 0. Rearranging 
the recurrence equation relates coefficients with g > 0 to those with either g = 0, higher 
values of p or lower k :  

C k - 1-2 n - 1 I +2 n + 1 / p  

- ( - l ) " T ( n +  1 -  k /2+ ' , ) r (n -  k / 2 )  
r( n + 3 2 r (  n + 1 + 2 )  

n ( - i )T( t+f)r( t+I+i)  

- 

ZO T ( t +  I - k / 2 + f ) r (  t - k / 2 )  

x R ( k ,  1, 2t + 1, p )  n z 0  

and 

( - f -  k/2), ,(1- k/2),(-1)" 
( I + +) nn ! c k - l l l p  Ck-l-2nlt2nlp = 

( - l ) T (  n -4- k / 2 ) r (  n + 1 - k / 2 )  
2 r (  n + ;+ I)n ! 

n - I  zo r( t + I - k / 2  + 1 )r( t - k / 2  + f) 

- 

(- i)T( t + i)r( t + I + :) 

x R(  k, 1,2t + 2, p )  rial 

where 

I ( I + g + s - 2 ) / 2  

+ F 1 2  a ; l m - s C k - l - g + m + l l + g - 2 - m m - s p  
s = - I , 2  m = ( l + s ) / 2  

As this function contains coefficients with higher p or lower k, it is already determined. 
The double sum, calculated using the linearised product of Legendre polynomials, 
results from the interaction between the two finite mass particles. In the case of helium 
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it is the electron-electron interaction term. A s  is well known this term results in 
non-separability of the SE. The equations for coefficients CL, are the same as ( A l )  
with R ( k ,  I, g, p )  replaced by R'( k ,  1, g, p ) .  R'( k, 1, g, p )  is identical to R (k, 1, g, p )  except 
that Cylp is replaced by CLIP and p I  and p2 interchanged. 

Using 

Y ( k ,  4 8 )  = [ X ( k  1, g ) + k W ( k  I g )1 /2  

Z ( k  1, g )  = [ X ( k  4 8 )  - k W ( k  1, g)1 /2  
where 

; - 1 1  
1,112- k / 4 +  g / 2  + 1,812 - k / 2  -+, 1 + g / 2  - k / 2  

1/2-k/4+g/2 ,g /2+1,1+g/2+;  

and 

+ Y ( k ,  4 g ) R ' ( k ,  4 g, P I 1  - W k ,  1, PI. (A261  
Note that the definitions for X ( k ,  1, g )  and W ( k ,  1, g )  given by Gottschalk and Maslen 
(1985)  are valid for restricted values of k, 1 and g whereas in the above definitions 
there are no restrictions on k, 1 and g. These are related by standard transformations 
(Bailey 1935). Functions D( k, 1, p )  and D'( k, 1, p )  are defined by 

where Zk is shorthand for X I J ( I + , = k j .  

For k = 21 + 4 m  + 2  the equations determining C,,fp and Cbfp are 

E W(k' I' g ,  [ R ( k ,  1, g, p )  - R ' ( k ,  1, g, p ) ]  = 0 
g = 1  g ( 2 1 + g + l )  

and 
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Setting p + 1 = 0 gives a value for c k - / J J o +  C;-rJro. These are specified completely if the 
wavefunction is symmetric, and in other cases by requiring the wavefunction to be 
normalisable. For k = 21 + 4m the equations determining CGIP and Cblp are 

is ( k’ 
g = 1  g ( 2 1 + g + l )  

[ R ( k, 1, g, p ) + R ’( k, 1, g, p ) ]  + D( k, 1, p )  = 0 (A4a) 

a 
=-2  c W(ky  [R(k, 1, g, p +  1) - R‘(k, 1, g, p + l)]. 

g = l  g ( 2 1 + g + l )  
Setting p + 1 = 0 determines c k - [ J [ o -  C;-lrJo. These coefficients are determined com- 
pletely either by the requirement of antisymmetry or normalisability of the 
wavefunction. 

The infinite series used to simplify the coefficients, denoted X(k ,  1, g )  where g = j  - 1, 
was reduced to a finite series and the elementary infinite series T and In 2 by Davis 
and Maslen (1983a). They defined a function S(k,  1, b) such that 

X (  k, 1, g )  = -( 21 + g + 1) + (21 - k - 2 ) ~ (  k, 1, g)S( k, 1, b)  

where b = (g -. k)/2 and 

82kr (g /2+  i ) r ( i +  g/2+;) 
r ( g / 2 -  k /2 -$ ) r ( l -  k / 2 + g / 2 ) ‘  c(k, 1, g) = 

Noting that 
W (  k, I, g )  = 1 - C( k, I, g)S(  k, I + 1, b) 

the reduction of W( k, 1, g )  is also achieved using the simplification of S (  k, 1, b). 

with k = 0 ,  1, 2 are 

X(0, 0,O) = 0 

X (  1,1,0) = -2(21- 1) X ( 1 , 0 , 1 )  = -1 X(1,1,2)=-(21+3) I s 0  

W(l, l ,  0) = (41+2)/(21+3) W(l,O, 1) = 1 W( 1,1,2) = 1 1 3 0 .  

The values of X(  k, 1, g )  and W( k, 1, g) required for the calculation of the coefficients 

W(O,O, 0) = 1 

For I >  1 

-r( I + t ) 8 T 1 / 2  
2T(1/2+;)r(i /2-$) X(2,1,0) = X(2,1,1)=2(1-51)/3 

r(i+;)T’/28 
3r( 1/2 +f)r( 112 + ;)Y X(2,1,2)=2(21+3)/3-  X(2,1,3)  = -2(1+2) 

X(2,1,4)=20(21+5)/3+- 
31 

r( 1+;)2d12 5(1+ 1) 
3(1+2) 

W(2,1,0) = W(2,1,1) =- 

W(2, I, 2) = 

W(2,1,4) = 

r( 1/2 + 2) r (  1/2)2’ 

-- (21+3) W(2, I, 3) = 1 
4 1 - ( i + i ) ~ l / ~  

3( 1 - i )r( 112 + 2 ) r (  1/2)2/ 3 ( I  - 1) 

3( i - i ) r ( i /2+2)r(1/2+1)2’-  3 ( i - i )  . 
8r( i + ; ) P 2  1 O( 21 + 5 )  
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If 1 is treated as a continuous variable the 1 = 0 and 1 values of X(2 ,1 ,  g) and W(2,  1, g) 
are the limits of the 1 > 1 expressions. 

Note there are typographical errors in the transformed expressions for S (  k, 1, b )  
reported by Davis and Maslen (1983a). Using their notation the correct expressions 
are, for k even and k / 2  - 1 even, 

S ( k ,  1, b )  = ( - l ) ( k / 2 - f + 2 ) / 2  ( 2 k  + 4, k + 21) ! !!! (-2,  k - 21 + 2 )  ! !!! 2k+2(0, 2k + 4 )  !! 

k + l  

( k +  1 - j ) ! ( 2 b  - 1 , 2 6 + 2 k - 2 j + 3 ) ! !  
j=O 

- 1  + 9' (k+21+4j,  k + 2 1 ) ! ! ! ! ( k - 2 1 - 2 - 4 j ,  k - 2 1 + 2 ) ! ! ! !  

x (21 + 1 + 4 j ) (2b  - 2j + k / 2  - 1 - 1,2b + 3 k / 2  + 1 + 3 + 2 j )  !! 

x (26 +2j+ k / 2  + 1,2b -2j + 3 k / 2  - 1 + 2 ) ! !  

j = ( k / 2 - f + 2 ) / 2  

1 
b + ( k / 2 - 1 ) / 2  

+ Y ( - l y - b ( 2 j - 1 , 2 1 + k + 2 j + 1 ) ! ! ( 2 1 + 2 j - 2 ,  k + 2 j + 2 ) ! !  
j = b  

and for k even, k / 2  - 1 odd and 1 s k / 2 +  1 ,  

( 2  k + 2 ,  k + 21) ! ! ! ! (0 ,  k - 21 + 2 )  ! ! ! ! [ ( k  + 1 )  ! !I-* E S ( k ,  1, b )  = ( - 1 ) ' 3 k / 2 - 1 + 3 ) / 2  

~ ( 2 6 + 2 j + k + l ,  2 6 + 3 k - 2 j + 3 ) ! !  

( k / 2 - 1 - 1 ) / 2  

j = O  
- 1 (k+21+4j, k + 2 1 ) ! ! ! !  

x ( k  - 21 - 2 - 4j, k - 21 + 2 )  ! ! !!(21+ 1 + 4 j )  

x (2b  -2j  + 3 k / 2  - 1,2b + 2j + 5 k / 2  + 1 + 4 ) ! !  

1 x ( 2 b  + 2j + 3 k / 2  + 1 + 1,2b  - 2j+ 5 k / 2  - 1 + 3 ) ! !  

b + ( 3 k / 2 - 1 + 1 ) / 2  

+ 1 ( - l ) - -b (2 j  - 1,21+ k + 2j+ l ) ! !  (21 +2j - 2 ,  k +  2j+ 2 ) ! ! .  
j = b  
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